
PROGRAMMER'S CHALLENGE
By Bob Boonstra, Westford, MA

PROJECTION

For the Challenge this month, we return to the topic of computer graphics — you'll be solving a
simplified rendering problem. Your Challenge is to create the image formed by a set of polygons on a
specified projection plane, as viewed from a specific viewpoint, and as illuminated from a point light
source. You will need to perform hidden surface elimination, create shadows caused by the light source,
and project the image as it would be seen by someone at the viewpoint. You will be performing multiple
projections from a given viewpoint,  so this Challenge includes an initialization routine as well as a
calculation routine, both of which are included for timing purposes in determining the winner.

The prototype for the code you should write is:

#define kMAXPOINTS 10

typedef struct My2DPoint { /* point in z==0 plane */
float x2D; /* x coordinate */
float y2D; /* y coordinate */

} My2DPoint;

typedef struct My3DPoint {
float x3D; /* x coordinate */
float y3D; /* y coordinate */
float z3D; /* z coordinate */

} My3DPoint;

typedef struct My3DDirection {
float thetaX; /* angle in radians */
float thetaY; /* angle in radians */
float thetaZ; /* angle in radians */

} My3DDirection;

typedef struct MyPlane {
My3DDirection planeNormal;  /* normal vector to plane */
My3DPoint planeOrigin;  /* origin of plane in 3D space */

} MyPlane;

typedef struct MyPolygon {
long numPoints; /* number of points in polygon */
My2DPoint thePoint[kMAXPOINTS]; /* polygon in z==0 plane */
MyPlane polyPlane; /* rotate/translate z==0 plane to this plane */
RGBColor polyColor /* the color to draw this polygon */

} MyPolygon;

void InitProjection(
My3DPoint *viewPoint, /* viewpoint from which to project */
My3DPoint *illumPoint, /* viewpoint from which to draw shadow */
void *storage, /* auxiliary storage preallocated for your use */
long storageSize /* number of bytes of storage */

);

void CalcProjection(



GWorldPtr offScreen, /* GWorld to draw projection */
MyPolygon thePolys[], /* polygons to project */
long numPolys, /* number of polygons to project */
My3DPoint *viewPoint, /* viewpoint from which to project */
My3DPoint *illumPoint, /* illumination point from which to draw shadow */
void *storage, /* auxiliary storage preallocated for your use */
long storageSize /* number of bytes of storage */

);

Your InitProjection routine will be provided with a pointer to auxiliary storage (storageSize bytes, at least
1MB) preallocated for your use, along with the viewPoint from which projections are to be made and the
illumPoint location of an illumination  source from which shadows are to be created.  InitProjection may
perform any calculations that may be useful for multiple CalcProjection calls that follow. CalcProjection will
be provided the same parameters given to InitProjection, along with the number (numPolys) and location of
the  polygons  to  be  projected,  and  the  offScreen GWorld  in  which  the  projection  is  to  be  drawn.
CalcProjection should calculate the way  thePolys would look from  viewPoint,  projected onto a projection
plane normal to the viewPoint vector and passing through the origin. Hidden surface elimination must
be performed so that obscured polygons or parts of polygons are not seen. The image of the projection
is to be rendered in the GWorld pointed to by offScreen, with the projection plane mapped to the z==0
plane in the GWorld. Polygons must be rendered in the appropriate polyColor, subject to the limitations of
the GWorld.  Polygons are the same color on both sides. Parts of the projection plane not filled by
projections of polygons should be black.

In addition to projecting the polygon image as seen from viewPoint, you must also project the shadow
of thePolys created by an illumination source at illumPoint, onto the projection plane and onto the image of
other  polygons,  as  seen from  viewPoint.  Shadows should  be rendered  in  the  color  of  the  surface in
shadow,  using  a  50%  gray  pattern.  All  polygons  have  a  flat  matte  surface,  creating  no  specular
reflections of the illumination source. The illumPoint will be on the same side of the projection plane as
the viewPoint.

Polygons are specified in 2-dimensional coordinates in the z==0 plane, to ensure that all points are
coplanar,  along with a planeNormal vector that specifies the orientation of the polygon plane and a
planeOrigin that specifies the plane origin. The last vertex of a polygon is connected to the first vertex to
close the polygon (i.e., a square would have four vertices, not a fifth that is the same as the first.) The
true polygon coordinates to be projected are calculated by first  rotating counterclockwise about the
positive  z  axis  by  thetaZ  (i.e.,  the  positive  x  axis  rotated  90  degrees  maps  to  the  positive  y  axis) ,  then
counterclockwise  about  the  positive  x axis  by  thetaX  (i.e.,  positive  y  rotates  to  positive  z),  then
counterclockwise about the positive  y axis by  thetaY  (i.e.,  positive  z rotates  to  positive  x),  and finally  by
translating the origin to the planeOrigin point. In matrix form, the transformation is:

| X |   | x3D |            | x2D |
| Y | = | y3D | + Ry Rx Rz | y2D |, where
| Z |   | z3D |            |  0  |

     | cos(thetaZ) -sin(thetaZ)        0     | 
Rz = | sin(thetaZ)  cos(thetaZ)        0     |
     |       0            0            1     |

     |       1            0            0     |
Rx = |       0      cos(thetaX) -sin(thetaX) |
     |       0      sin(thetaX)  cos(thetaX) |

     | cos(thetaY)        0      sin(thetaY) | 
Ry = |       0            1            0     |



     |-sin(thetaY)        0      cos(thetaY) |

The offScreen GWorld will have a pixelDepth of 32. The viewPoint and illumPoint will have z coordinates
greater than zero, but thePolys may have coordinates with arbitrary values (after rotating and translating
the polyPlane). The projection plane is opaque, meaning that any part of a polygon behind the projection
plane is invisible, creating no projection and no shadow.

On  average,  CalcProjection will  be  called  approximately  10  times  with  the  same  viewpoint  and
illumPoint, but different polygons, for each call to InitProjection. The code producing the fastest projection,
including both the InitProjection and CalcProjection times, will be the winner. 

This will be a native PowerPC Challenge, using the latest CodeWarrior environment. Solutions may
be coded in C, C++, or Pascal. 

THREE MONTHS AGO WINNER

Perhaps it was the short amount of time to work with the BeOS CD-ROM bundled in the January
issue of the magazine, or the fact that the BeOS required a 604 PowerMac, or some minor installation
anomalies with the BeOS, or to migration of interest to a prospective Next-OS — whatever the reason,
only two people entered the BeSort Challenge. Congratulations to Charles Higgins for submitting the
fastest solution to the BeSort Challenge. The problem itself was fairly simple: write a SortWindow class
that  would  sort  a  list  of  character  strings  by  one  of  three  methods,  two specified  by  the  problem
statement and one of your own choosing. 

Both Charles and the second contestant, Kenneth Slezak, implemented the required bubble sort and
exchange sort methods, and both used the quicksort algorithm for the third method. The main difference
in efficiency was in the technique used to swap list elements. Charles exchanged the pointers in the list
and invalidated the list view to cause the list to be redrawn. Kenneth deleted the items to be exchanged
from the list and added the items back into the list in the reverse order. On my 8500, the former was
faster by 10+%. Interestingly enough, the latter was ~5% faster. Since the problem statement called for
evaluation on the Macintosh, Charles' solution is the winner.

One other  interesting observation  — in the winning solution,  execution  time was dominated  by
display time.  I verified this by repeating the timing tests with the windows hidden. In the winning
solution,  this  reduced execution time by almost 80%. In Ken Slezak's solution,  execution time was
dominated by the list additions/deletions used to swap list elements, so the difference in results is much
smaller.

A  straightforward  optimization  to  the  winning  solution  improved  execution  time  significantly.
Instead of invalidating the ListView each time two elements were exchanged, one need only invalidate the
rectangles for the two items being exchanged. This change reduced execution time by some 30% when
the windows were visible. (It actually hurt performance when the windows were not visible.)

The table below provides the execution times and code sizes for each two solutions submitted, plus
the optimized version of the winning solution. It shows the time, in seconds, required to sort a list of
500 strings by each of the three sort methods, with either visible windows or invisible windows.

                                      V i s i b l e   W i n d o w                                                 I n v i s i b l e   W i n d o w       
                        TOTAL       Bubble          Xchg         Quick           TOTAL       Bubble          Xchg         Quick             Code  
Charles Higgins       56.6             1.0           54.6             0.9                 12.0             0.4           11.3             0.4              1472  
Ken Slezak              64.0             0.8           59.7             3.4                 59.8             0.7           55.9             3.2              1620  
Optimized                38.5             0.7           37.0             0.8                 33.9             0.5           32.7             0.7              1536  



TOP 20 CONTESTANTS
Here are the Top Contestants for the Programmer’s Challenge. The numbers below include points

awarded over the 24 most recent contests, including points earned by this month's entrants. 

          Rank          Name                            Points                           Rank          Name                               Points  
                1.          Munter, Ernst                    182                               11.          Nicolle, Ludovic                    21  
                2.          Gregg, Xan                        114                               12.          Picao, Miguel Cruz                21  
                3.          Larsson, Gustav                   67                               13.          Brown, Jorg                            20  
                4.          Lengyel, Eric                       40                               14.          Gundrum, Eric                       20  
                5.          Lewis, Peter                        32                               15.          Higgins, Charles                     20  
                6.          Boring, Randy                     27                               16.          Kasparian, Raffi                     20  
                7.          Cooper, Greg                       27                               17.          Slezak, Ken                            20  
                8.          Antoniewicz, Andy             24                               18.          Studer, Thomas                      20  
                9.          Beith, Gary                          24                               19.          Karsh, Bill                              19  
              10.          Cutts, Kevin                        21                               20.          Nevard, John                          17  

There are three ways to earn points: (1) scoring in the top 5 of any Challenge, (2) being the first person 
to find a bug in a published winning solution or, (3) being the first person to suggest a Challenge that I 
use. The points you can win are:

1st place 20 points 5th place 2 points
2nd place 10 points finding bug 2 points
3rd place 7 points suggesting Challenge 2 points
4th place 4 points

Here is Charles Higgins' winning solution:

SORTWINDOW.CPP

Charles Higgins
   
#include "SortWindow.h"

void swap(BWindow *aWindow, char **s1, char **s2);
char **addlist( BWindow *aWindow, char **list, int numberOfThings);
   
SortWindow::SortWindow(BRect frame)
         : BWindow(frame, "Sort", B_TITLED_WINDOW, 0)
{
   BRect            aRect = frame;
   BListView       *aView;
   
   aRect.OffsetTo(B_ORIGIN);
   aView = new BListView(aRect, "SortView", 
                          B_FOLLOW_ALL, B_WILL_DRAW);
   this->AddChild(aView);
}

void swap(BWindow *aWindow, char **s1, char **s2)
{
   BView   *aView;



   char    *temp;
   
   aView = aWindow->FindView("SortView");
   aWindow->Lock();
   temp = *s1;
   *s1 = *s2;
   *s2 = temp;
   aView->Invalidate();
   aWindow->Unlock();
}

char **addlist( BWindow *aWindow, char **list, int numberOfThings)
{
   BListView       *aView;
   int              i;
   
   aView = (BListView*)aWindow->FindView("SortView");
   aWindow->Lock();
   for(i=0;i< numberOfThings;i++)
      aView->AddItem(list[i]);
   aWindow->Unlock();
   return((char**)aView->Items());
}

void SortWindow::DoSort(
   char *thingsToSort[], int numberOfThings, SortType sortMethod)
{
   short            i,
                    j,
                    k,
                    sorted = FALSE;
   char           **myList;
                   
   myList = addlist( this, thingsToSort, numberOfThings);
   switch(sortMethod)
   {
      case kBubbleSort:
         i = numberOfThings-1;
         while(i>0)
         {
            j=i;
            for(k=0;k<i;++k)
            {
               if (0 < strcmp(myList[k],myList[j]))
                  j = k;
            }
            swap( this, &myList[i], &myList[j]);
            i--;
         }
         break;
      case kExchange:
         while(!sorted)
         {
            sorted = TRUE;
            for(i=0;i<numberOfThings-1;i++)
            {
               if(0 < strcmp(myList[i],myList[i+1]))



               {                  
                  sorted = FALSE;
                  swap( this, &myList[i], &myList[i+1]);
               }
            }
         }
         break;
      case kMySort:
         QuickSort( myList, 0, numberOfThings);
         break;
   }
   memcpy(thingsToSort,myList,numberOfThings*sizeof(char*));
   be_app->PostMessage(B_QUIT_REQUESTED);
}

void SortWindow::QuickSort( char **list, int first, int last)
{
   int              j,i;

   while(last - first > 1)
   {
      i = first;
      j = last;
      for(;;)
      {
         while(++i < last && strcmp(list[i],list[first]) < 0)
            ;
         while(--j > first && strcmp(list[j],list[first]) > 0)
            ;
         if (i >= j)
            break;
         swap( this, &list[i], &list[j]);         
      }
      if( j == first)
      {
         ++first;
         continue;
      }
      swap( this, &list[first], &list[j]);      
      if(j - first < last - (j+1))
      {
         QuickSort( list,first,j);
         first = j + 1;
      }
      else
      {
         QuickSort( list,j+1,last);
         last = j;
      }
   }
}

SORTWINDOW.H

typedef enum SortType {
 kBubbleSort = 1,



 kExchange = 2,
 kExchangeSort = 2,
 kMySort = 3
 } SortType;

class SortWindow : public BWindow {

public:
SortWindow(BRect frame);

virtual void DoSort( char *thingsToSort[],
     int numberOfThings,
     SortType sortMethod);
     
virtual void QuickSort( char **list, int first, int last);

};


